
Building an Installer
Throughout the book, we have built up a CMS. This CMS works on your machine.
The next step is to make sure that it works on other machines as well.

This chapter will cover topics such as:

•	 Creating a virtual machine using VirtualBox

•	 Creating the installer application

•	 Checking for missing features on the server

At the end of this chapter, you will be able to package and release your CMS for
others to use, whether in-house or the general public.

This chapter shows how to detect various settings on the host machine. It is not a
100% complete installer, but it details how the tests can be done. As an example, I
have not added a test to see that MySQL has been installed. You can add your own
detection script for that.

Although it is possible to create and test the installer on your own machine, it's not
ideal—you've already had the CMS installed and running, which means that your
web server is already set up and compatible with the CMS's needs.

Ideally, you should create and test the installer on a machine which has not been
carefully adjusted to match those needs. This way you can alert the eventual admin
who installs the program of any missing requirements.

Because it is unrealistic to have a separate computer for testing each possible web
server coniguration, it is best to test using virtual machines.

www.eBookTM.Com

Building an Installer

[294]

Installing a virtual machine
A Virtual Machine (VM) is an emulation of an entire computer, which runs in a
"host" machine, whether it is your laptop, a desktop, or even your company server.

There are many different VM engines out there. Examples include VMWare, QEMU,
VirtualBox, Virtuozzo, Xen—and the list goes on.

In this chapter, we will use VirtualBox, because it's free, and it works on the four
most popular server operating systems: Linux, Windows, Solaris, and OS X.

Installing VirtualBox
You can download a VirtualBox binary for your operating system from this place:

http://www.virtualbox.org/wiki/Downloads.

I will describe installation using Fedora (a Linux brand). If you are not using this
brand or operating system, use the online material to properly install your program.

First, create a Yum repository coniguration ile. Yum is a downloader which
automatically installs programs and their dependencies.

Create the ile /etc/yum.repos.d/virtualbox.repo (from the root of your
machine):

[virtualbox]

name=Fedora $releasever - $basearch - VirtualBox

baseurl=http://download.virtualbox.org/virtualbox/rpm/fedora/\

 $releasever/$basearch

enabled=1

gpgcheck=1

gpgkey=http://download.virtualbox.org/virtualbox/debian/\

 sun_vbox.asc

Next, install the program with this command:

[root@ryuk ~]# yum install VirtualBox

Note that if you are using a bleeding edge distribution, you may need to change
$releasever to an older version number of Fedora. At the time of writing, the
current release of Fedora is 13, and Sun (the makers of VirtualBox) has not updated
their servers to include this, so I needed to change $releasever to 12 to get the
installation to work:

baseurl=http://download.virtualbox.org/virtualbox/rpm/fedora/\

 12/$basearch

www.eBookTM.Com

Chapter 12

[295]

After installation, you may need to conigure a kernel module to allow VirtualBox to
run at a reasonable speed. Enter the following command:

[root@ryuk ~]# /etc/init.d/vboxdrv setup

This may require further dependencies, but any error message that shows up will tell
you what those dependencies are.

After these steps, you will have a fully installed VirtualBox application. You can now
start installing a guest operating system.

Installing the virtual machine
The operating system (OS) which runs inside the VM is called a guest. The main
operating system of the machine is called the host.

Installing a guest OS is straightforward. It's almost the same as doing it on the real
machine itself.

First, download an ISO image of the operating system you want to install. ISO is
an archive format which is used to store DVDs and CDs as single iles. When you
download any OS from an online repository, it's usually in ISO format.

If you don't have fast bandwidth, you can also get installation DVDs from Linux
magazines.

The choice of operating system is up to you, but you should keep the following
in mind:

1. Don't choose an operating system that you are certain will never need to
be supported. With my own CMS, I never expect it to be run on Windows.
It may be run on any variety of Linux, though. And so, I won't try to run it
on Windows but would choose a variant of Linux (including Unix variants
such as perhaps OS X or Solaris, but with no great effort to make it work for
those).

2. Don't choose a totally up-to-date operating system—the installer should
work on older systems as well—such as systems that have older PHP
installations, or missing Pear dependencies, or older versions of console
applications such as ImageMagick.

3. Try to choose operating systems that are popular. Debian, CentOS, Fedora
and, Ubuntu, are all very popular Linux variants for hosting. Don't focus
all your energy on a variant that you are not likely to come across in
professional life.

www.eBookTM.Com

Building an Installer

[296]

CentOS 5.2 its the bill almost perfectly—it's a well-known variant of RedHat
Enterprise Linux, is free to download, and has a very conservative upgrade history.
While Ubuntu and Fedora push the limits of what can be done with Linux, CentOS
is about stability.

You could also use Debian for exactly the same reason. I'm more comfortable
with CentOS.

Go to http://mirror.centos.org/centos/5/isos/ and download the appropriate
ISO for your machine.

The iles online at the time of writing are actually for Centos 5.5, but I have a copy of
5.2 here from a previous installation I did, and the process is identical in both cases
(5.5 is more stable than 5.2, but apart from that, there are not many visible changes).

The ile I have is called CentOS-5.2-i386-bin-DVD.iso, and the 5.5 equivalent is
CentOS-5.5-i386-bin-DVD.iso.

Note that this is for installation on your own machine for testing purposes. If
you were to use a production server, you should naturally use the latest version
available, 5.5.

Okay—start up the program. In my machine, it's under Applications | System
Tools | Sun VirtualBox:

You can see from the screenshot that I already had one virtual machine installed
from earlier testing. This also illustrates that virtual machines can be used to install
totally different guest operating systems than the host. The screenshot shows an
installation of Windows XP which is inside a Fedora Linux host.

www.eBookTM.Com

Chapter 12

[297]

Click on New, and follow the setup wizard. Here are some suggested answers to the
questions:

Name Centos5.2

Operating System Linux

Version RedHat

Base Memory 256 MB

Boot Hard Disk should be checked, as well as Create new Hard Disk. Click on Next
until the next question appears.

Dynamically expanding storage lets the fake hard disk of the VM expand if it's near
full, so tick that.

Accept the defaults for the rest of the wizard.

On completion, the screen should now appear similar to the next screenshot:

Now, make sure that Centos5.2 is selected, then click on Settings.

www.eBookTM.Com

Building an Installer

[298]

Click on CD/DVD-ROM, tick Mount CD/DVD Drive, tick the ISO Image ile box,
and select the ISO ile that you downloaded, as seen in the next screenshot:

Then click on OK.

Now click on Start.

The Centos5.2 machine will boot up, acting like the ISO ile you selected was a disk
sitting in the virtual machine's DVD drive.

After a few moments, the installation will begin. Follow the wizard and install your
guest operating system.

In most cases, the default selected option is the correct one, so if you're not sure
about something, just click on OK—it's only a virtual image anyway, so if something
goes wrong, you can always reinstall it.

When the wizard asks you which packages to install, accept the pre-selected
packages and click on Next—we want a default installation which is not tailored to
work with the CMS.

When the wizard is completed, the installation will take place. This can take
anywhere from a few minutes up to half an hour or so:

www.eBookTM.Com

Chapter 12

[299]

Notice the Right Ctrl message in the bottom-right-hand side of the screen—when
you click into the VM's window, your mouse and keyboard are trapped by the VM.
To escape from it, so you can select other applications on the host, and use the Right
Ctrl button on your keyboard to release the trap.

Another useful key combination is Right Ctrl + F, which will show the window in full
screen, as if you had booted the laptop or desktop from the guest OS instead of your
main OS.

When the installation is complete, click on the Reboot button in the guest screen. The
virtual machine will reboot.

You will be asked a number of conig questions—user setup and so on. Accept the
defaults where possible. Create a user account when asked.

Okay—all done!

www.eBookTM.Com

Building an Installer

[300]

One inal thing before we get to the CMS installation: When you log in, the machine
will check for upgrades. Don't bother upgrading. Remember that we want the installer
to work on older machines as well, and upgrading will therefore be pointless.

Installing the CMS in the VM
Now, log in to the guest OS. Open a console (Applications | Accessories |
Terminal), su to root (use su - root, so we have access to root's environment
variables) and install the absolute minimum you would expect to ind on a hosting
platform—web server, MySQL database, and PHP:

[root@localhost: ~]# yum install httpd php-mysql php mysql\

 mysql-server

Note that the PHP version installed with the default CentOS installation will be
out-of-date. In the case of 5.2, the version installed is 5.1.6. This is not recent enough
for our CMS to run (it's missing json_encode(), for example), but is a good test for
the installer.

When that's done, we can install the CMS code.

By default, an installation of Apache in CentOS (and most other Linux variants) will
have its default webroot set to /var/www/html, so copy your CMS to that location
using FTP, or HTTP, and so on.

Oh—before we go any further, open up the VirtualBox application again,
go into settings for the CentOS 5.2 machine, and uncheck the box next to
Mount CD/DVD Drive.

Otherwise, your VM may try to reinstall itself next time you turn it on.

Transferring the ile from your laptop or desktop to the virtual machine can be done
in many different ways, including setting up an FTP server on the guest or host or
creating a shared directory where iles are visible in both systems.

Personally, I chose to zip up the latest copy of the CMS, upload it to a ile server I
control, and download it through HTTP on the virtual machine. As a PHP developer,
you no doubt also have a ile server or web server somewhere where you can
temporarily place a ile while transferring it. This is probably the easiest way to
transfer iles without any prior preparation.

After unzipping, move all of the contents of your zipped ile to /var/www/html, such
that in that directory, you have the following iles:

www.eBookTM.Com

Chapter 12

[301]

Note that this is from directly zipping up a working copy of the CMS.

Delete the .private, f, and ww.cache directories—they are speciic to an installed
copy of the CMS, and should not be there before the installer places them there:

[root@localhost html]# cd /var/www/html && rm -rf .private \

 f ww.cache

Your iles are in place. Now we need to start up the web server and database server:

[root@localhost html]# /etc/init.d/httpd start && \

 /etc/init.d/mysqld start

And inally, let's make sure those two load up automatically the next time the virtual
machine is turned on:

[root@localhost html]# chkconfig --add httpd && \

 chkconfig --add mysqld

Now that your iles are in place and the web server is running, you can load up a
browser (Applications | Internet | Firefox Web Browser), and point it at localhost:

The screen is blank because the server expects the .private directory to be there,
and crashes because it's not found.

This is the point at which we can begin writing the installer.

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

www.eBookTM.Com

Building an Installer

[302]

Firstly though, make sure that your normal user account can edit the web iles—you
should not stay logged in as root while working:

[root@localhost html]# chown kae.kae /var/www/html -Rf

Change kae in the the command to whatever your user account is.

Creating the installer application
You can either edit the iles within the VM, or edit them on the host machine and
upload them to the VM after each change.

Personally, I prefer to edit things in-place, so all work in the rest of the chapter will
happen within the virtual machine itself.

If you are comfortable with Vim (the console-based editor), then you're ready to go.

If not, then either install an editor you are comfortable with, or use gedit
(Applications | Accessories | Text Editor), which is installed by default in most
Linux systems.

Core system changes
The irst thing we need to do is to intercept the failed loading of /.private/config.
php, and redirect the browser to the installer.

Create the directory /ww.installer within /var/www/html (all directory references
will be relative to /var/www/html in the rest of the chapter), and edit /ww.incs/
basics.php:. Add the following highlighted new lines around the existing un-
highlighted line:

if(file_exists(SCRIPTBASE . '.private/config.php')){

 require SCRIPTBASE . '.private/config.php';

}

else{

 header('Location: /ww.installer');

 exit;

}

This checks to see if the .private/config.php ile exists, and if not, it is assumed
that this is a fresh system, so the server redirects the browser into the /ww.installer
directory.

And that's all we need to do to the core scripts. Now we can concentrate solely on the
/ww.installer directory.

www.eBookTM.Com

Chapter 12

[303]

The installer
We need to irst decide exactly what the job of the installer is.

In most systems, an installer handles three things:

1. Checking the environment to see if it is suitable for the application.

2. Choosing and entering starter coniguration options.
3. Installation of the database.

Based on this, we can extend the installation process to this:

1. Check the environment, including:

	° PHP version. We need the json_encode() and json_decode()
functions, so the version needs to be at least 5.2.

	° SQLite support, for KFM.

	° Writable /f, /ww.cache, and /.private directories.

2. Ask for any admin-entered coniguration options needed for the system,
including:

	° MySQL database access codes.

	° Details for the irst administrator's user account.

3. Install the database, then save the coniguration ile to /.private/config.php.

You can see that the config.php ile is created absolutely last. It is also obvious
that if a config.php ile already exists, then the installer has already been run, and
should not be run again.

Therefore, the irst thing we need to do is to create the /ww.installer/index.php
ile and tell it to exit if the installer has already been run:

<?php

if(file_exists('../.private/config.php'))exit;

?>

<html>

 <head>

 <script src="http://ajax.googleapis.com/ajax/libs/

 jquery/1.4.2/jquery.min.js"></script>

 <script src="http://ajax.googleapis.com/ajax/libs/

 jqueryui/1.8.0/jquery-ui.min.js"></script>

 <script src="/ww.installer/js.js"></script>

 <link rel="stylesheet" href="/ww.installer/css.css"

www.eBookTM.Com

Building an Installer

[304]

 type="text/css" />

 </head>

 <body>

 <div id="header"></div>

 <div id="content">please wait...</div>

 </body>

</html>

We will handle the coniguration through jQuery.

Checking for missing features
First, we need to check for missing features. To do this, we will irst show the list of
required features, then use jQuery to ask the server about each of those features one
at a time.

The reason we use jQuery here is purely visual—it looks better to have things appear
to be checked and then removed from the screen, than to just have a PHP-generated
page list the problems.

If all of those feature requirements are resolved, we automatically go forward to the
next step, coniguration. Installation on the ideal server will not display the irst step
at all, as there will be nothing to resolve.

Create the ile /ww.installer/js.js:

function step1(){

 var tests=[

 ['php-version','PHP version 5.2 or higher'],

 ['sqlite','PDO SQLite version 3+'],

 ['f','Write permissions for user-files directory'],

 ['ww-cache','Write permissions for cache directory'],

 ['private','Write permissions for config directory']

]

 var html='';

 for(var i=0;i<tests.length;++i){

 html+='<div id="'+tests[i][0]+'" class="checking">'

 +'Checking: '+tests[i][1]

 +'</div>';

 }

 $('#content').html(html);

 $('.checking').each(function(){

 $.post('/ww.installer/check-'+this.id+'.php',

 step1_verify,'json');

 });

www.eBookTM.Com

Chapter 12

[305]

}

function step1_verify(res){

}

$(step1);

The last line is what starts everything off—when the page has loaded enough for
JavaScript to safely run, the function step1() is called.

This function then draws out a list of points to the screen, as seen in the following
screenshot:

After drawing the points to the screen, a separate HTTP request is called depending
on the check.

For example, for the irst item, where the array is ['php-version','PHP version
5.2 or higher'], the ile /ww.installer/check-php-version.php is called on
the server.

The result is then passed to the stub function step1_verify().

Let's write the irst of the checking iles, /ww.installer/check-php-version.php:

<?php

if(file_exists('../.private/config.php'))exit;

$vs=explode('.',phpversion());

if($vs[0]>5

 || ($vs[0]==5 && $vs[1]>=2)){

www.eBookTM.Com

Building an Installer

[306]

 echo '{"status":1,"test":"php-version"}';

 exit;

}

echo '{"status":0,"error":"'

 .'The PHP version must be at least 5.2. '

 .'It is currently '.phpversion().'",'

 .'"test":"php-version"}';

First, we check that the config.php ile does not exist—we do not want people
snooping on the capabilities of the server, so these checks should only be available
while you're installing.

Next, we check that the version number is greater than 5.2. The version string
returned by phpversion() is of the form "x.y.z", so the string needs to be separated
into distinct numbers before it can be compared.

If the version number is higher, then a JSON object is returned containing a status
variable which is true. Basically, it returns a "this is OK" message.

Otherwise, we return an error message.

Now, on the client-side, we want error messages to be highlighted to point out to
the admin that something needs to be done. Edit js.js and replace the stub step1_
verify() function with this:

function step1_verify(res){

 if(res.status==1){

 $('#'+res.test).slideUp(function(){

 $('#'+res.test).remove();

 });

 return;

 }

 $('#'+res.test)

 .addClass('error')

 .append('<p>'+res.error+'</p>');

}

This simple function irst sees if the check was successful, in which case the
displayed text for the check is removed in a sliding motion.

Otherwise, the element is highlighted as being in error. We add the class "error"
to the displayed <div> and add some text explaining what went wrong. The
explanation is sent by the server, allowing it to be tailored speciically to that server if
you want.

www.eBookTM.Com

Chapter 12

[307]

The other tests are similarly done.

Here is the SQLite one, check-sqlite.php:

<?php

if(file_exists('../.private/config.php'))exit;

if(extension_loaded('pdo_sqlite')){

 echo '{"status":1,"test":"sqlite"}';

 exit;

}

echo '{"status":0,"error":"'

 .'You must have the PDO SQLite library installed. '

 .'"test":"sqlite"}';

The same process is followed. First, verify that the script is allowed to be run,
then check to see if the requested feature can be veriied, and inally, give an error
message if it fails.

The default CentOS 5.2 installation we've installed does have SQLite installed as a
PDO library, but doesn't have the required PHP version, as we can see here:

In this image, you can see that the PHP version has returned an error message with a
clear description of the problem, and the SQLite test succeeded, so has been removed
from the screen.

www.eBookTM.Com

Building an Installer

[308]

There are three remaining tests. They are all basically the same. Here's the irst, /
ww.installer/check-f.php:

<?php

if(file_exists('../.private/config.php'))exit;

$dname='f';

@mkdir('../'.$dname);

@file_put_contents('../'.$dname.'/test-permissions','test');

if(file_exists('../'.$dname.'/test-permissions')){

 echo '{"status":1,"test":"f"}';

 unlink('../'.$dname.'/test-permissions');

 exit;

}

$dir=preg_replace('/ww.installer$/',$dname,dirname(__FILE__));

if(!is_dir($dir))$error=$dir.' does not exist. '

 .'Please create it.';

else $error=$dir.' is not writable by the web server.';

echo '{"status":0,'

 .'"error":"'.$error.'",'

 .'"test":"f"}';

The other two are basically the same, but for ww.cache and .private respectively.
Simply copy the above ile to check-ww-cache.php and check-private.php, then
replace the $dname value in both with ww.cache and .private respectively, and then
change the returned test variable in the JSON to ww-cache and private respectively.

The next step is for you to resolve the pointed out problems for yourself.

In my case, that's done by upgrading the PHP version, then creating the user
directories and making them writable by the server.

When the page is then reloaded, you end up with a blank content area.

We need to add a piece of code to watch for this and then move to step 2.

So, add this to the bottom of the step1() function (highlighted line):

 });

 setTimeout(step1_finished,500);

}

And then we need to add the step1_finished() function:

function step1_finished(){

 if($('.checking').length){

www.eBookTM.Com

Chapter 12

[309]

 setTimeout(step1_finished,500);

 }

 else step2();

}

function step2(){

}

This function loops every half-second until the checkpoints are gone. This should
only loop once on any reasonable server and connection, but with slow bandwidth
or a slow server, it will take a few seconds, and you'll see the valid points gradually
vanish as they're checked and veriied.

Adding the coniguration details
Step two is to ask for information such as database and user details.

So, irst, let's display the form. Replace the step2() stub function with this:

function step2(){

 $('#content').html('<table>'

 +'<tr><th id="db" colspan="2">Database name</th></tr>'

 +'<tr><th>Name</th><td><input id="dbname" /></td>'

 +'</tr>'

 +'<tr><th>Host</th><td>'

 +'<input id="dbhost" value="localhost" /></td></tr>'

 +'<tr><th>User</th><td><input id="dbuser" /></td></tr>'

 +'<tr><th>Password</th><td><input id="dbpass" /></td>'

 +'</tr>'

 +'<tr><th id="ad" colspan="2">Administrator</th></tr>'

 +'<tr><th>Email address</th><td><input id="admin" /></td>'

 +'</tr>'

 +'<tr><th>Password</th><td><input id="adpass" /></td>'

 +'</tr>'

 +'<tr><th>(and again)</th><td><input id="adpass2" /></td>'

 +'</tr>'

 +'</table><div class="error" id="errors"></div>');

 $('#content input').change(step2_verify);

}

function step2_verify(){

}

This will display a form with the most commonly needed coniguration items. It can
be expanded at a later date if you want it to include rarely changed things such as
the database port and so on.

www.eBookTM.Com

Building an Installer

[310]

We print out the form to the page, and set a watch on the inputs such that any
change to them will cause step2_verify() to call.

The form looks like this:

Now let's replace the step2_verify() stub form:

function step2_verify(){

 var opts={

 dbname:$('#dbname').val(),

 dbhost:$('#dbhost').val(),

 dbuser:$('#dbuser').val(),

 dbpass:$('#dbpass').val(),

 admin:$('#admin').val(),

 adpass:$('#adpass').val(),

 adpass2:$('#adpass2').val(),

 }

 $.post('/ww.installer/check-config.php',

 opts,step2_verify2,'json');

}

function step2_verify2(res){

}

www.eBookTM.Com

Chapter 12

[311]

This function just grabs all the input values and sends them to the server to be
veriied, which then returns its result to the step2_verify2() stub function.

Let's start with the veriication ile. Create /ww.installer/check-config.php:

<?php

if(file_exists('../.private/config.php'))exit;

$errors=array();

$dbname=@$_REQUEST['dbname'];

$dbhost=@$_REQUEST['dbhost'];

$dbuser=@$_REQUEST['dbuser'];

$dbpass=@$_REQUEST['dbpass'];

$admin=@$_REQUEST['admin'];

$adpass=@$_REQUEST['adpass'];

$adpass2=@$_REQUEST['adpass2'];

if($dbname=='' || $dbhost=='' || $dbuser==''){

 $errors[]='db requires name, hostname and username';

}

else{

 $db=mysql_connect($dbhost,$dbuser,$dbpass);

 if(!$db)$errors[]='db: could not connect - incorrect '

 .'details';

 else if(!mysql_select_db($dbname,$db)){

 $errors[]='db: could not select database "'

 .addslashes($dbname).'"';

 }

}

if(!filter_var($admin,FILTER_VALIDATE_EMAIL)){

 $errors[]='admin account must be an email address';

}

if(!$adpass && !$adpass2)$errors[]='admin password must not '

 .'be empty';

else if($adpass!=$adpass2)$errors[]='admin passwords must '

 .'both be equal';

echo json_encode($errors);

This checks the various submitted values, and builds up an array of error strings.

The error strings are then returned.

www.eBookTM.Com

Building an Installer

[312]

On the client-side, we then need to display the errors on the screen so the admin
knows what to correct. Edit the js.js ile again and replace the step2_verify2()
stub function with this:

function step2_verify2(res){

 if(!res.length)return step3();

 var html='';

 for(var i=0;i<res.length;++i){

 html+=''+res[i]+'';

 }

 html+='';

 $('#errors').html(html);

}

function step3(){

}

So, if there are no errors returned, then step3() is called.

Otherwise, the errors are displayed in a list:

So what do we do when the values are inally correct?

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

www.eBookTM.Com

Chapter 12

[313]

We need to save the values to ile, and then display a message explaining that
we're done.

On the server-side, we know exactly when step3 will be called, because that's where
we're doing the checking, so all we need to do is to do the step3 process (saving the
values to the conig ile) if we ind nothing wrong with the submitted values.

To do that, place the following code before the inal line of check-config.php
(highlighted):

if(!count($errors)){

 mysql_query('create table user_accounts(id int

 auto_increment not null primary key, email text,

 password char(32), active smallint default 0, groups

 text, activation_key char(32), extras text)default

 charset=utf8');

 mysql_query('insert into user_accounts values(1,"'

 .addslashes($admin).'", "'.md5($adpass).'",

 1, \'["_superadministrators"]\',"","")');

 mysql_query('create table groups(id int auto_increment not

 null primary key,name text)default charset=utf8');

 mysql_query('insert into groups values

 (1,"_superadministrators"),(2,"_administrators")');

 mysql_query('create table pages(id int auto_increment not

 null primary key,name text, body text, parent int, ord

 int, cdate datetime, special int, edate datetime, title

 text, template text, type varchar(64), keywords text,

 description text, associated_date date, vars text)

 default charset=utf8');

 $config='<?php $DBVARS=array('

 .'"username"=>"'.addslashes($dbuser).'",'

 .'"password"=>"'.addslashes($dbpass).'",'

 .'"hostname"=>"'.addslashes($dbhost).'",'

 .'"db_name"=>"'.addslashes($dbname).'");';

 file_put_contents('../.private/config.php',$config);

}

echo json_encode($errors);

Because there are no errors, we know the coniguration is complete and ready for
installation, so we carry on with the installation, installing the core database tables
and then recording the values to the conig ile /.private/config.php.

Finally, the result is returned to the client-side.

www.eBookTM.Com

Building an Installer

[314]

On the client-side, the result contains no errors, so we display a simple message
saying it's all done. Replace the step3() stub function with this:

function step3(){

 $('#content').html(

 '<p>Installation is complete. Your CMS is ready for '

 +'population.</p>'

 +'<p>Please log in to the '

 +'administration area to create your first page.</p>'

);

}

And with that in place, the CMS is installed:

Note that this does not mean the installer is absolutely inished.

Other problems may arise later, due to unforeseen incompatibilities between the
system and the CMS, which allowed the installation to complete, but don't allow
some unspeciied function to work.

When these things happen, all you can do is to ind out what the problem is—maybe
you are missing a certain PHP extension or Pear library—add a test for that problem
to the installer, and re-run the installation to make sure that ixes it.

But, for the most part, this is it.

www.eBookTM.Com

